コンテンツにスキップ

5. 出力ファイル

5.1. 出力結果ファイル

以下は、3章で説明した入力データh2o.datを実行した結果、出力されるh2o.logです。

Entering Gaussian System, Link 0=g16
 Input=h2o.dat
 Output=h2o.log
 Initial command:
 /apps/t4/rhel9/isv/gaussian/G16C02/g16/l1.exe "/scr/49672.1.all.q/Gau-19739.inp" -scrdir="/scr/49672.1.all.q/"  //g16が実行したコマンド
 Entering Link 1 = /apps/t4/rhel9/isv/gaussian/G16C02/g16/l1.exe PID=     19740.

 Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2016,
            Gaussian, Inc.  All Rights Reserved.

 This is part of the Gaussian(R) 16 program.  It is based on
 the Gaussian(R) 09 system (copyright 2009, Gaussian, Inc.),
 the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
 the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
 the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
 the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
 the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
 the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
 the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
 University), and the Gaussian 82(TM) system (copyright 1983,
 Carnegie Mellon University). Gaussian is a federally registered
 trademark of Gaussian, Inc.

 This software contains proprietary and confidential information,
 including trade secrets, belonging to Gaussian, Inc.

 This software is provided under written license and may be
 used, copied, transmitted, or stored only in accord with that
 written license.

 The following legend is applicable only to US Government
 contracts under FAR:

                    RESTRICTED RIGHTS LEGEND

 Use, reproduction and disclosure by the US Government is
 subject to restrictions as set forth in subparagraphs (a)
 and (c) of the Commercial Computer Software - Restricted
 Rights clause in FAR 52.227-19.

 Gaussian, Inc.
 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492


 ---------------------------------------------------------------
 Warning -- This program may not be used in any manner that
 competes with the business of Gaussian, Inc. or will provide
 assistance to any competitor of Gaussian, Inc.  The licensee
 of this program is prohibited from giving any competitor of
 Gaussian, Inc. access to this program.  By using this program,
 the user acknowledges that Gaussian, Inc. is engaged in the
 business of creating and licensing software in the field of
 computational chemistry and represents and warrants to the
 licensee that it is not a competitor of Gaussian, Inc. and that
 it will not use this program in any manner prohibited above.
 ---------------------------------------------------------------


 Cite this work as:
 Gaussian 16, Revision A.03,
 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
 M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
 G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich,
 J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian,
 J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young,
 F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone,
 T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
 G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
 J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
 T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta,
 F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,
 V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,
 K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,
 J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi,
 J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,
 J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

 ******************************************
 Gaussian 16:  ES64L-G16RevA.03 25-Dec-2016
                 5-Sep-2017
 ******************************************
 %CPU=2
SetSPE:  set environment variable "MP_BIND" = "yes"
 SetSPE:  set environment variable "MP_BLIST" = "0,1"
 Will use up to    2 processors via shared memory.
 %Mem=256Mb
 %Chk=h2o
 -----------------------------
 # HF/6-31G* Opt=Z-Matrix Test
 -----------------------------
 1/10=7,18=40,38=1/1,3;   // ← ルートカードを展開した結果で、使用するリンクの順番とオプションの定義をしています
 2/12=2,17=6,18=5,29=3,40=1/2;
 3/5=1,6=6,7=1,11=9,25=1,30=1,71=1/1,2,3;
 4//1;
 5/5=2,38=5/2;
 6/7=2,8=2,9=2,10=2,28=1/1;
 7/29=1/1,2,3,16;
 1/10=7,18=40/3(2);
 2/29=3/2;
 99//99;
 2/29=3/2;
 3/5=1,6=6,7=1,11=9,25=1,30=1,71=1/1,2,3;
 4/5=5,16=3,69=1/1;
 5/5=2,38=5/2;
 7//1,2,3,16;
 1/18=40/3(-5);
 2/29=3/2;
 6/7=2,8=2,9=2,10=2,19=2,28=1/1;
 99/9=1/99;
 ---
 h2o
 ---
 Symbolic Z-matrix:
 Charge =  0 Multiplicity = 1
 O
 H                    1    r1
 H                    1    r1       2    a1
       Variables:
  r1                    0.958                   
  a1                  104.5                     


 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
 Berny optimization.
 Initialization pass.
                       ----------------------------  // ← 構造最適化の初期構造を表示
                       !    Initial Parameters    !
                       ! (Angstroms and Degrees)  !
 ----------------------                            ----------------------
 !      Name          Value   Derivative information (Atomic Units)     !
 ------------------------------------------------------------------------
 !       r1          0.958    estimate D2E/DX2                          !
 !       a1        104.5      estimate D2E/DX2                          !
 ------------------------------------------------------------------------
 Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 EigMax=2.50D+02 EigMin=1.00D-04
 Number of steps in this run=     20 maximum allowed number of steps=    100.
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 ---------------------------------------------------------------------------------------------------
                            Z-MATRIX (ANGSTROMS AND DEGREES)
   CD    Cent   Atom    N1       Length/X        N2       Alpha/Y        N3        Beta/Z          J
 ---------------------------------------------------------------------------------------------------
      1      1  O
      2      2  H        1   0.958000(     1)
      3      3  H        1   0.958000(     2)      2  104.500(     3)
 ---------------------------------------------------------------------------------------------------
                         Z-Matrix orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          8           0        0.000000    0.000000    0.000000
      2          1           0        0.000000    0.000000    0.958000
      3          1           0        0.927485    0.000000   -0.239864
 ---------------------------------------------------------------------
                    Distance matrix (angstroms):
                    1          2          3
     1  O    0.000000
     2  H    0.958000   0.000000
     3  H    0.958000   1.514961   0.000000
 Stoichiometry    H2O          // ← 分子の示性式、対称性を表示
 Framework group  C2V[C2(O),SGV(H2)]
 Deg. of freedom     2
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          8           0        0.000000    0.000000    0.117301
      2          1           0        0.000000    0.757481   -0.469203
      3          1           0       -0.000000   -0.757481   -0.469203
 ---------------------------------------------------------------------
 Rotational constants (GHZ):         820.7393935         436.9774424         285.1552836
 Standard basis: 6-31G(d) (6D, 7F)   // ← 基底関数の情報
 There are    10 symmetry adapted cartesian basis functions of A1  symmetry.
 There are     1 symmetry adapted cartesian basis functions of A2  symmetry.
 There are     3 symmetry adapted cartesian basis functions of B1  symmetry.
 There are     5 symmetry adapted cartesian basis functions of B2  symmetry.
 There are    10 symmetry adapted basis functions of A1  symmetry.
 There are     1 symmetry adapted basis functions of A2  symmetry.
 There are     3 symmetry adapted basis functions of B1  symmetry.
 There are     5 symmetry adapted basis functions of B2  symmetry.
    19 basis functions,    36 primitive gaussians,    19 cartesian basis functions  // ← 基底関数、Gaussianの数
     5 alpha electrons        5 beta electrons  // ← α電子、β電子の個数
       nuclear repulsion energy         9.1873335790 Hartrees.
 NAtoms=    3 NActive=    3 NUniq=    2 SFac= 2.25D+00 NAtFMM=   60 NAOKFM=F Big=F
 Integral buffers will be    131072 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.
 One-electron integrals computed using PRISM.
 NBasis=    19 RedAO= T EigKep=  2.23D-02  NBF=    10     1     3     5
 NBsUse=    19 1.00D-06 EigRej= -1.00D+00 NBFU=    10     1     3     5
 ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=3 IRadAn=         5 AccDes= 0.00D+00
 Harris functional with IExCor=  205 and IRadAn=       5 diagonalized for initial guess.
 HarFok:  IExCor=  205 AccDes= 0.00D+00 IRadAn=         5 IDoV= 1 UseB2=F ITyADJ=14
 ICtDFT=  3500011 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 FoFCou: FMM=F IPFlag=           0 FMFlag=      100000 FMFlg1=           0
         NFxFlg=           0 DoJE=T BraDBF=F KetDBF=T FulRan=T
         wScrn=  0.000000 ICntrl=       500 IOpCl=  0 I1Cent=   200000004 NGrid=           0
         NMat0=    1 NMatS0=      1 NMatT0=    0 NMatD0=    1 NMtDS0=    0 NMtDT0=    0
 Petite list used in FoFCou.
 Initial guess orbital symmetries:
       Occupied  (A1) (A1) (B2) (A1) (B1)
       Virtual   (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A1) (A1) (A2)
                 (B1) (A1) (B2) (A1)
 The electronic state of the initial guess is 1-A1.
 Keep R1 ints in memory in symmetry-blocked form, NReq=845746.
 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Requested convergence on             energy=1.00D-06.
 No special actions if energy rises.
 SCF Done:  E(RHF) =  -76.0104963113     A.U. after   10 cycles  // ← 初期構造のエネルギー値、10回で収束
            NFock= 10  Conv=0.40D-08     -V/T= 2.0025

 **********************************************************************

            Population analysis using the SCF density.

 **********************************************************************

 Orbital symmetries:
       Occupied  (A1) (A1) (B2) (A1) (B1)              // ← 軌道の対称性
       Virtual   (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A1) (A1) (A2)
                 (B1) (A1) (B2) (A1)
 The electronic state is 1-A1.
 Alpha  occ. eigenvalues --  -20.56054  -1.34140  -0.70647  -0.57090  -0.49786  // ← 占有軌道
 Alpha virt. eigenvalues --    0.21058   0.30395   1.02223   1.13154   1.16779   // ← 空軌道
 Alpha virt. eigenvalues --    1.17096   1.38059   1.43406   2.02028   2.03398   // ← 空軌道
 Alpha virt. eigenvalues --    2.06791   2.62132   2.94589   3.97014        // ← 空軌道
          Condensed to atoms (all electrons):
               1          2          3
     1  O    8.335873   0.265188   0.265188
     2  H    0.265188   0.320390  -0.018702
     3  H    0.265188  -0.018702   0.320390
 Mulliken charges:                // ← Mulliken法による原子上の部分電荷
               1
     1  O   -0.866249
     2  H    0.433124
     3  H    0.433124
 Sum of Mulliken charges =  -0.00000
 Mulliken charges with hydrogens summed into heavy atoms:
               1
     1  O   -0.000000
 Electronic spatial extent (au):  <R**2>=             18.9527
 Charge=             -0.0000 electrons
 Dipole moment (field-independent basis, Debye):   // ← 双極子モーメントと多重極子が続く
    X=             -0.0000    Y=              0.0000    Z=             -2.2259  Tot=              2.2259
 Quadrupole moment (field-independent basis, Debye-Ang):
   XX=             -7.2281   YY=             -4.1302   ZZ=             -5.9782
   XY=              0.0000   XZ=              0.0000   YZ=             -0.0000
 Traceless Quadrupole moment (field-independent basis, Debye-Ang):
   XX=             -1.4493   YY=              1.6486   ZZ=             -0.1994
   XY=              0.0000   XZ=              0.0000   YZ=             -0.0000
 Octapole moment (field-independent basis, Debye-Ang**2):
  XXX=              0.0000  YYY=              0.0000  ZZZ=             -1.4457  XYY=             -0.0000
  XXY=             -0.0000  XXZ=             -0.3842  XZZ=             -0.0000  YZZ=             -0.0000
  YYZ=             -1.3830  XYZ=             -0.0000
 Hexadecapole moment (field-independent basis, Debye-Ang**3):
 XXXX=             -5.2087 YYYY=             -5.4726 ZZZZ=             -6.0688 XXXY=             -0.0000
 XXXZ=             -0.0000 YYYX=              0.0000 YYYZ=             -0.0000 ZZZX=             -0.0000
 ZZZY=             -0.0000 XXYY=             -2.0428 XXZZ=             -1.9302 YYZZ=             -1.5873
 XXYZ=             -0.0000 YYXZ=              0.0000 ZZXY=              0.0000
 N-N= 9.187333579045D+00 E-N=-1.988596914604D+02  KE= 7.581838981513D+01
 Symmetry A1   KE= 6.774003774686D+01
 Symmetry A2   KE= 2.904585704475D-34
 Symmetry B1   KE= 4.554902672613D+00
 Symmetry B2   KE= 3.523449395664D+00
 Calling FoFJK, ICntrl=      2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
 ***** Axes restored to original set *****
 -------------------------------------------------------------------
 Center     Atomic                   Forces (Hartrees/Bohr)
 Number     Number              X              Y              Z
 -------------------------------------------------------------------
      1        8           0.012466227    0.000000000    0.009652384
      2        1          -0.001220832   -0.000000000   -0.011299643
      3        1          -0.011245394   -0.000000000    0.001647259
 -------------------------------------------------------------------
 Cartesian Forces:  Max     0.012466227 RMS     0.007504962
 -----------------------------------------------------------------------------------------------
                       Internal Coordinate Forces (Hartree/Bohr or radian)
  Cent   Atom   N1       Length/X         N2         Alpha/Y        N3         Beta/Z          J
 -----------------------------------------------------------------------------------------------
      1  O
      2  H        1  -0.011300(     1)
      3  H        1  -0.011300(     2)      2   0.002210(     3)
 -----------------------------------------------------------------------------------------------
 Internal  Forces:  Max     0.011299643 RMS     0.009313943

 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
 Berny optimization.
 Search for a local minimum.
 Step number   1 out of a maximum of   20      // ← 構造最適化ステップの1回目
 All quantities printed in internal units (Hartrees-Bohrs-Radians)
 Second derivative matrix not updated -- first step.
 The second derivative matrix:
                          r1        a1
           r1           1.11812
           a1           0.00000   0.16000
 ITU=  0
     Eigenvalues ---    0.16000   1.11812
 RFO step:  Lambda=-4.87012999D-04 EMin= 1.60000000D-01
 Linear search not attempted -- first point.
 Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    r1        1.81036  -0.02260   0.00000  -0.02020  -0.02020   1.79015
    a1        1.82387   0.00221   0.00000   0.01377   0.01377   1.83764
         Item               Value     Threshold  Converged?
 Maximum Force            0.022599     0.000450     NO    // ← 構造の収束性を判定
 RMS     Force            0.016056     0.000300     NO    // ← 4つの判定
 Maximum Displacement     0.020203     0.001800     NO
 RMS     Displacement     0.017289     0.001200     NO
 Predicted change in Energy=-2.436522D-04
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 ---------------------------------------------------------------------------------------------------
                            Z-MATRIX (ANGSTROMS AND DEGREES)
   CD    Cent   Atom    N1       Length/X        N2       Alpha/Y        N3        Beta/Z          J
 ---------------------------------------------------------------------------------------------------
      1      1  O
      2      2  H        1   0.947309(     1)
      3      3  H        1   0.947309(     2)      2  105.289(     3)
 ---------------------------------------------------------------------------------------------------
                         Z-Matrix orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          8           0        0.000000    0.000000    0.000000
      2          1           0        0.000000    0.000000    0.947309
      3          1           0        0.913782    0.000000   -0.249795
 ---------------------------------------------------------------------
                    Distance matrix (angstroms):
                    1          2          3
     1  O    0.000000
     2  H    0.947309   0.000000
     3  H    0.947309   1.506006   0.000000
 Stoichiometry    H2O
 Framework group  C2V[C2(O),SGV(H2)]
 Deg. of freedom     2
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          8           0        0.000000    0.000000    0.114958
      2          1           0       -0.000000    0.753003   -0.459830
      3          1           0       -0.000000   -0.753003   -0.459830
 ---------------------------------------------------------------------
 Rotational constants (GHZ):         854.5405516         442.1897515         291.4014373
 Standard basis: 6-31G(d) (6D, 7F)
 There are    10 symmetry adapted cartesian basis functions of A1  symmetry.
 There are     1 symmetry adapted cartesian basis functions of A2  symmetry.
 There are     3 symmetry adapted cartesian basis functions of B1  symmetry.
 There are     5 symmetry adapted cartesian basis functions of B2  symmetry.
 There are    10 symmetry adapted basis functions of A1  symmetry.
 There are     1 symmetry adapted basis functions of A2  symmetry.
 There are     3 symmetry adapted basis functions of B1  symmetry.
 There are     5 symmetry adapted basis functions of B2  symmetry.
    19 basis functions,    36 primitive gaussians,    19 cartesian basis functions
     5 alpha electrons        5 beta electrons
       nuclear repulsion energy         9.2891539427 Hartrees.
 NAtoms=    3 NActive=    3 NUniq=    2 SFac= 2.25D+00 NAtFMM=   60 NAOKFM=F Big=F
 Integral buffers will be    131072 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.
 One-electron integrals computed using PRISM.
 NBasis=    19 RedAO= T EigKep=  2.19D-02  NBF=    10     1     3     5
 NBsUse=    19 1.00D-06 EigRej= -1.00D+00 NBFU=    10     1     3     5
 Initial guess from the checkpoint file:  "h2o.chk"
 B after Tr=     0.000000   -0.000000   -0.000000
         Rot=    1.000000   -0.000000   -0.000000   -0.000000 Ang=   0.00 deg.
 Initial guess orbital symmetries:
       Occupied  (A1) (A1) (B2) (A1) (B1)
       Virtual   (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A1) (A1) (A2)
                 (B1) (A1) (B2) (A1)
 ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=2 IRadAn=         4 AccDes= 0.00D+00
 Harris functional with IExCor=  205 and IRadAn=       4 diagonalized for initial guess.
 HarFok:  IExCor=  205 AccDes= 0.00D+00 IRadAn=         4 IDoV= 1 UseB2=F ITyADJ=14
 ICtDFT=  3500011 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 FoFCou: FMM=F IPFlag=           0 FMFlag=      100000 FMFlg1=           0
         NFxFlg=           0 DoJE=T BraDBF=F KetDBF=T FulRan=T
         wScrn=  0.000000 ICntrl=       500 IOpCl=  0 I1Cent=   200000004 NGrid=           0
         NMat0=    1 NMatS0=      1 NMatT0=    0 NMatD0=    1 NMtDS0=    0 NMtDT0=    0
 Petite list used in FoFCou.
 Keep R1 ints in memory in symmetry-blocked form, NReq=845746.
 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Requested convergence on             energy=1.00D-06.
 No special actions if energy rises.
 SCF Done:  E(RHF) =  -76.0107452153     A.U. after    9 cycles
            NFock=  9  Conv=0.32D-08     -V/T= 2.0020
 Calling FoFJK, ICntrl=      2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
 ***** Axes restored to original set *****
 -------------------------------------------------------------------
 Center     Atomic                   Forces (Hartrees/Bohr)
 Number     Number              X              Y              Z
 -------------------------------------------------------------------
      1        8           0.000386587    0.000000000    0.000295092
      2        1          -0.000394635   -0.000000000    0.000116222
      3        1           0.000008048   -0.000000000   -0.000411314
 -------------------------------------------------------------------
 Cartesian Forces:  Max     0.000411314 RMS     0.000252766
 -----------------------------------------------------------------------------------------------
                       Internal Coordinate Forces (Hartree/Bohr or radian)
  Cent   Atom   N1       Length/X         N2         Alpha/Y        N3         Beta/Z          J
 -----------------------------------------------------------------------------------------------
      1  O
      2  H        1   0.000116(     1)
      3  H        1   0.000116(     2)      2   0.000706(     3)
 -----------------------------------------------------------------------------------------------
 Internal  Forces:  Max     0.000706458 RMS     0.000418767

 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
 Berny optimization.
 Search for a local minimum.
 Step number   2 out of a maximum of   20    // ← 構造最適化ステップの2回目
 All quantities printed in internal units (Hartrees-Bohrs-Radians)
 Update second derivatives using D2CorN and points    1    2
 DE= -2.49D-04 DEPred=-2.44D-04 R= 1.02D+00
 TightC=F SS=  1.41D+00  RLast= 2.45D-02 DXNew= 5.0454D-01 7.3351D-02
 Trust test= 1.02D+00 RLast= 2.45D-02 DXMaxT set to 3.00D-01
 The second derivative matrix:
                          r1        a1
           r1           1.12630
           a1           0.00903   0.14388
 ITU=  1  0
     Eigenvalues ---    0.14380   1.12639
 RFO step:  Lambda=-3.44317636D-06 EMin= 1.43797375D-01
 Quartic linear search produced a step of  0.01007.
 Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    r1        1.79015   0.00023  -0.00020   0.00038   0.00017   1.79033
    a1        1.83764   0.00071   0.00014   0.00475   0.00489   1.84253
         Item               Value     Threshold  Converged?
 Maximum Force            0.000706     0.000450     NO
 RMS     Force            0.000526     0.000300     NO
 Maximum Displacement     0.004891     0.001800     NO
 RMS     Displacement     0.003461     0.001200     NO
 Predicted change in Energy=-1.750045D-06
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 ---------------------------------------------------------------------------------------------------
                            Z-MATRIX (ANGSTROMS AND DEGREES)
   CD    Cent   Atom    N1       Length/X        N2       Alpha/Y        N3        Beta/Z          J
 ---------------------------------------------------------------------------------------------------
      1      1  O
      2      2  H        1   0.947401(     1)
      3      3  H        1   0.947401(     2)      2  105.569(     3)
 ---------------------------------------------------------------------------------------------------
                         Z-Matrix orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          8           0        0.000000    0.000000    0.000000
      2          1           0        0.000000    0.000000    0.947401
      3          1           0        0.912638    0.000000   -0.254286
 ---------------------------------------------------------------------
                    Distance matrix (angstroms):
                    1          2          3
     1  O    0.000000
     2  H    0.947401   0.000000
     3  H    0.947401   1.508960   0.000000
 Stoichiometry    H2O
 Framework group  C2V[C2(O),SGV(H2)]
 Deg. of freedom     2
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          8           0       -0.000000   -0.000000    0.114600
      2          1           0       -0.000000    0.754480   -0.458400
      3          1           0       -0.000000   -0.754480   -0.458400
 ---------------------------------------------------------------------
 Rotational constants (GHZ):         859.8805266         440.4602469         291.2645645
 Standard basis: 6-31G(d) (6D, 7F)
 There are    10 symmetry adapted cartesian basis functions of A1  symmetry.
 There are     1 symmetry adapted cartesian basis functions of A2  symmetry.
 There are     3 symmetry adapted cartesian basis functions of B1  symmetry.
 There are     5 symmetry adapted cartesian basis functions of B2  symmetry.
 There are    10 symmetry adapted basis functions of A1  symmetry.
 There are     1 symmetry adapted basis functions of A2  symmetry.
 There are     3 symmetry adapted basis functions of B1  symmetry.
 There are     5 symmetry adapted basis functions of B2  symmetry.
    19 basis functions,    36 primitive gaussians,    19 cartesian basis functions
     5 alpha electrons        5 beta electrons
       nuclear repulsion energy         9.2875961733 Hartrees.
 NAtoms=    3 NActive=    3 NUniq=    2 SFac= 2.25D+00 NAtFMM=   60 NAOKFM=F Big=F
 Integral buffers will be    131072 words long.
 Raffenetti 1 integral format.
 Two-electron integral symmetry is turned on.
 One-electron integrals computed using PRISM.
 NBasis=    19 RedAO= T EigKep=  2.19D-02  NBF=    10     1     3     5
 NBsUse=    19 1.00D-06 EigRej= -1.00D+00 NBFU=    10     1     3     5
 Initial guess from the checkpoint file:  "h2o.chk"
 B after Tr=    -0.000000    0.000000    0.000000
         Rot=    1.000000   -0.000000   -0.000000   -0.000000 Ang=   0.00 deg.
 Initial guess orbital symmetries:
       Occupied  (A1) (A1) (B2) (A1) (B1)
       Virtual   (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A1) (A1) (A2)
                 (B1) (A1) (B2) (A1)
 Keep R1 ints in memory in symmetry-blocked form, NReq=845746.
 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Requested convergence on             energy=1.00D-06.
 No special actions if energy rises.
 SCF Done:  E(RHF) =  -76.0107463490     A.U. after    7 cycles
            NFock=  7  Conv=0.80D-08     -V/T= 2.0020
 Calling FoFJK, ICntrl=      2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
 ***** Axes restored to original set *****
 -------------------------------------------------------------------
 Center     Atomic                   Forces (Hartrees/Bohr)
 Number     Number              X              Y              Z
 -------------------------------------------------------------------
      1        8          -0.000046900    0.000000000   -0.000035619
      2        1           0.000134735   -0.000000000   -0.000128721
      3        1          -0.000087835   -0.000000000    0.000164340
 -------------------------------------------------------------------
 Cartesian Forces:  Max     0.000164340 RMS     0.000090008
 -----------------------------------------------------------------------------------------------
                       Internal Coordinate Forces (Hartree/Bohr or radian)
  Cent   Atom   N1       Length/X         N2         Alpha/Y        N3         Beta/Z          J
 -----------------------------------------------------------------------------------------------
      1  O
      2  H        1  -0.000129(     1)
      3  H        1  -0.000129(     2)      2  -0.000241(     3)
 -----------------------------------------------------------------------------------------------
 Internal  Forces:  Max     0.000241219 RMS     0.000174475

 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
 Berny optimization.
 Search for a local minimum.
 Step number   3 out of a maximum of   20            // ← 構造最適化ステップの3回目
 All quantities printed in internal units (Hartrees-Bohrs-Radians)
 Update second derivatives using D2CorN and points    1    2    3
 DE= -1.13D-06 DEPred=-1.75D-06 R= 6.48D-01
 TightC=F SS=  1.41D+00  RLast= 4.89D-03 DXNew= 5.0454D-01 1.4683D-02
 Trust test= 6.48D-01 RLast= 4.89D-03 DXMaxT set to 3.00D-01
 The second derivative matrix:
                          r1        a1
           r1           1.12679
           a1           0.03608   0.19331
 ITU=  1  1  0
     Eigenvalues ---    0.19192   1.12818
 RFO step:  Lambda=-1.54338049D-08 EMin= 1.91921501D-01
 Quartic linear search produced a step of -0.25989.
 Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    r1        1.79033  -0.00026  -0.00005  -0.00012  -0.00016   1.79017
    a1        1.84253  -0.00024  -0.00127   0.00005  -0.00123   1.84131
         Item               Value     Threshold  Converged?
 Maximum Force            0.000257     0.000450     YES     // ← 全ての項目をパス
 RMS     Force            0.000249     0.000300     YES
 Maximum Displacement     0.001225     0.001800     YES
 RMS     Displacement     0.000874     0.001200     YES
 Predicted change in Energy=-1.702147D-07
 Optimization completed.                // ← 以下の値がパラメータの収束値
    -- Stationary point found.
                       ----------------------------
                       !   Optimized Parameters   !
                       ! (Angstroms and Degrees)  !
 ----------------------                            ----------------------
 !      Name          Value   Derivative information (Atomic Units)     !
 ------------------------------------------------------------------------
 !       r1          0.9474   -DE/DX =   -0.0003                        !
 !       a1        105.5693   -DE/DX =   -0.0002                        !
 ------------------------------------------------------------------------
 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 ---------------------------------------------------------------------------------------------------
                            Z-MATRIX (ANGSTROMS AND DEGREES)
   CD    Cent   Atom    N1       Length/X        N2       Alpha/Y        N3        Beta/Z          J
 ---------------------------------------------------------------------------------------------------
      1      1  O
      2      2  H        1   0.947401(     1)
      3      3  H        1   0.947401(     2)      2  105.569(     3)
 ---------------------------------------------------------------------------------------------------
                         Z-Matrix orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          8           0        0.000000    0.000000    0.000000
      2          1           0        0.000000    0.000000    0.947401
      3          1           0        0.912638    0.000000   -0.254286
 ---------------------------------------------------------------------
                    Distance matrix (angstroms):
                    1          2          3
     1  O    0.000000
     2  H    0.947401   0.000000
     3  H    0.947401   1.508960   0.000000
 Stoichiometry    H2O
 Framework group  C2V[C2(O),SGV(H2)]
 Deg. of freedom     2
 Full point group                 C2V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C2      NOp   2
                         Standard orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          8           0       -0.000000   -0.000000    0.114600
      2          1           0       -0.000000    0.754480   -0.458400
      3          1           0       -0.000000   -0.754480   -0.458400
 ---------------------------------------------------------------------
 Rotational constants (GHZ):         859.8805266         440.4602469         291.2645645

 **********************************************************************

            Population analysis using the SCF density.

 **********************************************************************

 Orbital symmetries:
       Occupied  (A1) (A1) (B2) (A1) (B1)
       Virtual   (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A1) (A1) (A2)
                 (B1) (A1) (B2) (A1)
 The electronic state is 1-A1.
 Alpha  occ. eigenvalues --  -20.55785  -1.34603  -0.71435  -0.57064  -0.49817
 Alpha virt. eigenvalues --    0.21301   0.30685   1.03200   1.13331   1.16805
 Alpha virt. eigenvalues --    1.17810   1.38514   1.43095   2.02080   2.03054
 Alpha virt. eigenvalues --    2.06733   2.63561   2.96570   3.97780
          Condensed to atoms (all electrons):
               1          2          3
     1  O    8.333071   0.267909   0.267909
     2  H    0.267909   0.316090  -0.018443
     3  H    0.267909  -0.018443   0.316090
 Mulliken charges:
               1
     1  O   -0.868889
     2  H    0.434444
     3  H    0.434444
 Sum of Mulliken charges =   0.00000
 Mulliken charges with hydrogens summed into heavy atoms:
               1
     1  O    0.000000
 Electronic spatial extent (au):  <R**2>=             18.8118
 Charge=              0.0000 electrons
 Dipole moment (field-independent basis, Debye):
    X=             -0.0000    Y=             -0.0000    Z=             -2.1977  Tot=              2.1977
 Quadrupole moment (field-independent basis, Debye-Ang):
   XX=             -7.2059   YY=             -4.1022   ZZ=             -6.0028
   XY=              0.0000   XZ=              0.0000   YZ=              0.0000
 Traceless Quadrupole moment (field-independent basis, Debye-Ang):
   XX=             -1.4356   YY=              1.6681   ZZ=             -0.2326
   XY=              0.0000   XZ=              0.0000   YZ=              0.0000
 Octapole moment (field-independent basis, Debye-Ang**2):
  XXX=              0.0000  YYY=             -0.0000  ZZZ=             -1.4288  XYY=             -0.0000
  XXY=              0.0000  XXZ=             -0.3870  XZZ=             -0.0000  YZZ=             -0.0000
  YYZ=             -1.3553  XYZ=             -0.0000
 Hexadecapole moment (field-independent basis, Debye-Ang**3):
 XXXX=             -5.1843 YYYY=             -5.3615 ZZZZ=             -5.9889 XXXY=             -0.0000
 XXXZ=             -0.0000 YYYX=              0.0000 YYYZ=              0.0000 ZZZX=             -0.0000
 ZZZY=             -0.0000 XXYY=             -2.0172 XXZZ=             -1.9084 YYZZ=             -1.5813
 XXYZ=             -0.0000 YYXZ=              0.0000 ZZXY=              0.0000
 N-N= 9.287596173269D+00 E-N=-1.990817855112D+02  KE= 7.585918805302D+01
 Symmetry A1   KE= 6.776054239959D+01
 Symmetry A2   KE= 8.998074294512D-35
 Symmetry B1   KE= 4.551517540655D+00
 Symmetry B2   KE= 3.547128112774D+00

 Test job not archived.
 1\1\GINC-R3I4N7\FOpt\RHF\6-31G(d)\H2O1\Gaussian\05-Sep-2017\1\\# HF/6-
 31G* Opt=Z-Matrix Test\\h2o\\0,1\O\H,1,r1\H,1,r1,2,a1\\r1=0.94740118\a
 1=105.56929929\\Version=ES64L-G16RevA.03\State=1-A1\HF=-76.0107463\RMS
 D=8.049e-09\RMSF=9.001e-05\Dipole=0.6885853,0.,0.5229555\Quadrupole=0.
 3440127,-1.0673063,0.7232935,0.,-0.6806234,0.\PG=C02V [C2(O1),SGV(H2)]
 \\@


 The earth never tires,
 The earth is rude, silent, incomprehensible at first,
 Nature is rude and incomprehensible at first,
 Be not discouraged, keep on,
 There are divine things well envelop'd,
 I swear to you there are divine things more beautiful than words can tell.
                                 -- Walt Whitman
 Job cpu time:       0 days  0 hours  0 minutes  4.8 seconds.
 Elapsed time:       0 days  0 hours  0 minutes  2.7 seconds.
 File lengths (MBytes):  RWF=      6 Int=      0 D2E=      0 Chk=      2 Scr=      1
 Normal termination of Gaussian 16 at Tue Sep  5 13:58:06 2017.

5.2. 結果の確認

3章で説明した入力データh2o.datの計算後にできるh2o.logtailコマンドで確認してください。

$ tail h2o.log
 The earth is rude, silent, incomprehensible at first,
 Nature is rude and incomprehensible at first,
 Be not discouraged, keep on,
 There are divine things well envelop'd,
 I swear to you there are divine things more beautiful than words can tell.
                                 -- Walt Whitman
 Job cpu time:       0 days  0 hours  0 minutes  4.8 seconds.
 Elapsed time:       0 days  0 hours  0 minutes  2.7 seconds.
 File lengths (MBytes):  RWF=      6 Int=      0 D2E=      0 Chk=      2 Scr=      1
 Normal termination of Gaussian 16 at Tue Sep  5 13:58:06 2017.

無事終了したときの出力の最後はこのようにNormal termination of Gaussian 16で終わっているはずです。 そうではなく、エラーメッセージが出ているようでしたら、出力のもう少し上の方を見てエラー出力が無いか確認してください。
なお、プロセッサーを2個以上使った場合のJob cpu time:は実際の計算時間とは全く異なりますので参考にしないで下さい。
また、エラーではありませんが、構造最適化の途中で最適化のサイクルの上限回数を上回ったためにストップしてしまうことがあります。 その場合は、出力の最後は以下のようになっています。

-- Number of steps exceeded、 NStep= 22
-- Flag reset to prevent archiving.
-----------------------------
! Non-Optimized Parameters !
! (AngstromsandDegrees) !
------------------ ----------------------
! Name Value Derivative information (Atomic Units) !
-------------------------------------------------------------------
! r1 1.4959 -DE/DX = -0.000032 !
! r2 1.496 -DE/Dx = 0.000064 !

(中略)

-------------------------------------------------------------------
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Error termination request processed by link 9999.
Error terminatio in Lnkle.

(中略)

Job cpu time: 0 days O hours 38minutes 35.7 seconds.
File lengths (MBytes): RWF= 9 Int= O D2E= O Chk= 3 Scr= 1

このような場合にチェック・ポイントファイルを残しておけば、 簡単に構造最適化をリスタートさせることができます。

%Mem=256Mb
%Chk=h2o
# hf/6-31g* opt=restart

H20

0 1

この場合、Z行列などの構造データはチェック ポイントファイルから読み込むので、入力する必要はありません。